Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy
نویسندگان
چکیده
The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients.
منابع مشابه
Effect of N2 partial pressure on the structural and mechanical properties of TaN films
TaN films with different N2 partial pressure were deposited on 304 stainless steel using the magnetron sputtering method. The effect of gas pressure on the mechanical property, morphology and phase structure of the films is investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), microhardness testing, friction coefficient measurements, and wear mechanism study. The XRD results c...
متن کاملNanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography
Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...
متن کاملChange of diffused and scattered light with surface roughness of p-type porous Silicon
Porous silicon samples were prepared by electrochemical etching method for different etching times. The structural properties of porous silicon (PS) samples were determined from the Atomic Force Microscopy (AFM) measurements. The surface mean root square roughness (σ rms) changes as function of porosity were studied, and the influence of etching time on porosity and roughness was studied too. U...
متن کاملChange of diffused and scattered light with surface roughness of p-type porous Silicon
Porous silicon samples were prepared by electrochemical etching method for different etching times. The structural properties of porous silicon (PS) samples were determined from the Atomic Force Microscopy (AFM) measurements. The surface mean root square roughness (σ rms) changes as function of porosity were studied, and the influence of etching time on porosity and roughness was studied too. U...
متن کاملInvestigation of the Effect of DMOAP with Dimethyl Octadecyl Aminopropyl Group on TMOS Wettability Properties
In this study, organic-mineral hybrid silica coating was prepared by sol-gel process, in order to investigate the effect of Dimethyl octadecyl amin propyl group on TMOS wettability. The sol solutions were prepared at room temperature by hydrolysis and condensation of tetra methoxysilane (TMOS) diluted in methanol as solvent and in the presence of acetic acid as a catalyst and dimethylacetaldehy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016